Question:

Select all choices that are subspaces of \(\R^3\).
Note : \(\R\) denotes the set of real numbers.

Updated On: Nov 15, 2024
  • \(\left\{x=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \R^3:x=\alpha\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}+\beta\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix},\alpha,\beta \in \R \right\}\)
  • \(\left\{x=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \R^3:x=\alpha^2\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}+\beta^2\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix},\alpha,\beta \in \R \right\}\)
  • \(\left\{x=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \R^3:5x_1+2x_3=0,4x_1-2x_2+3x_3=0\right\}\)
  • \(\left\{x=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \R^3:5x_1+2x_3+4-0\right\}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A, C

Solution and Explanation

The correct option is (A) : \(\left\{x=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \R^3:x=\alpha\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}+\beta\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix},\alpha,\beta \in \R \right\}\) and (C) : \(\left\{x=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \R^3:5x_1+2x_3=0,4x_1-2x_2+3x_3=0\right\}\)
Was this answer helpful?
1
0