Given: - Frequency of light: \( \nu = 6 \times 10^{14} \, \text{Hz} \) - Power emitted by the source: \( P = 2 \times 10^{-3} \, \text{W} \) - Planck's constant: \( h = 6.63 \times 10^{-34} \, \text{Js} \)
The energy \( E \) of a photon is given by:
\[ E = h\nu \]
Substituting the given values:
\[ E = 6.63 \times 10^{-34} \times 6 \times 10^{14} \, \text{J} \] \[ E = 3.978 \times 10^{-19} \, \text{J} \]
Rounding off:
\[ E \approx 4 \times 10^{-19} \, \text{J} \]
The number of photons emitted per second (\( n \)) is given by:
\[ n = \frac{P}{E} \]
Substituting the given values:
\[ n = \frac{2 \times 10^{-3}}{4 \times 10^{-19}} \] \[ n = \frac{2}{4} \times 10^{16} \] \[ n = 0.5 \times 10^{16} \] \[ n = 5 \times 10^{15} \]
Conclusion: The number of photons emitted per second by the source is \( 5 \times 10^{15} \).
List-I EM-Wave | List-II Wavelength Range |
---|---|
(A) Infra-red | (III) 1 mm to 700 nm |
(B) Ultraviolet | (II) 400 nm to 1 nm |
(C) X-rays | (IV) 1 nm to \(10^{-3}\) nm |
(D) Gamma rays | (I) \(<10^{-3}\) nm |
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: