lim n→∞ \(\frac{1}{n^3} \)
\[\sum_{k=1}^{n} k^{2} = \]
x
\(\frac{x}{2}\)
\(\frac{x}{3}\)
\(\frac{x}{4}\)
The correct option is (C) \(\frac{x}{3}\)
If A is a square matrix of order 3, then |Adj(Adj A2)| =
Match the following List -I (Complex) List II (Spin only Magnetic Moment)
List -I (Complex) | List II (Spin only Magnetic Moment) | ||
A) | [CoF6]3- | I) | 0 |
B) | [Co(C2O4)3]3- | II) | √24 |
C) | [FeF6]3+ | III) | √8 |
D) | [Mn(CN)6]3- | IV) | √35 |
V) | √15 |
the correct answer is:
If (h,k) is the image of the point (3,4) with respect to the line 2x - 3y -5 = 0 and (l,m) is the foot of the perpendicular from (h,k) on the line 3x + 2y + 12 = 0, then lh + mk + 1 = 2x - 3y - 5 = 0.
If a line ax + 2y = k forms a triangle of area 3 sq.units with the coordinate axis and is perpendicular to the line 2x - 3y + 7 = 0, then the product of all the possible values of k is
Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.
A list of trigonometric equations and their solutions are given below:
Trigonometrical equations | General Solutions |
sin θ = 0 | θ = nπ |
cos θ = 0 | θ = (nπ + π/2) |
cos θ = 0 | θ = nπ |
sin θ = 1 | θ = (2nπ + π/2) = (4n+1) π/2 |
cos θ = 1 | θ = 2nπ |
sin θ = sin α | θ = nπ + (-1)n α, where α ∈ [-π/2, π/2] |
cos θ = cos α | θ = 2nπ ± α, where α ∈ (0, π] |
tan θ = tan α | θ = nπ + α, where α ∈ (-π/2, π/2] |
sin 2θ = sin 2α | θ = nπ ± α |
cos 2θ = cos 2α | θ = nπ ± α |
tan 2θ = tan 2α | θ = nπ ± α |