Question:

Let the line \(x + y = 1\) meet the axes of x and y at A and B, respectively. A right-angled triangle AMN is inscribed in the triangle OAB, where O is the origin and the points M and N lie on the lines OB and AB, respectively. If the area of the triangle AMN is \(\frac{4}{9}\) of the area of the triangle OAB and \(AN : NB = \lambda : 1\), then the sum of all possible values of \(\lambda\) is:

Show Hint

For geometry problems with ratios and area conditions, breaking the triangle into smaller triangles and applying known area formulas helps simplify calculations.
Updated On: Nov 2, 2025
  • \(\frac{1}{2}\)
  • \(\frac{13}{6}\)
  • 5
  • 2
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Approach Solution - 1

Step 1: Finding area relations.
Area of triangle \( \Delta OAB = \frac{1}{2} \)
Area of triangle \( \Delta AMN = \frac{4}{9} \times \frac{1}{2} = \frac{2}{9} \)

Step 2: Determining coordinates. Equation of AB is \(x + y = 1\) \[ OA = 1, \quad AM = \sec(45^\circ - \theta) \] \[ AN = \sec(45^\circ - \theta) \cos\theta, \quad MN = \sec(45^\circ - \theta) \sin\theta \] From area conditions: \[ \text{Ar}(AMN) = \frac{1}{2} \sec^2(45^\circ - \theta) \sin\theta \cos\theta = \frac{2}{9} \] \[ \tan\theta = 2 \quad \text{or} \quad \frac{1}{2} \] Since \(\tan\theta = 2\) is rejected, \(\tan\theta = \frac{1}{2}\) From similarity condition, \[ \frac{AN}{NB} = \lambda \quad \Rightarrow \quad \lambda = \frac{13}{6} \]
Was this answer helpful?
2
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Find the intercepts of the line \(x + y = 1\).
The line meets the x-axis when \(y = 0\):
\[ x = 1 \Rightarrow A(1, 0) \]
It meets the y-axis when \(x = 0\):
\[ y = 1 \Rightarrow B(0, 1) \]
Hence, the coordinates are \(A(1, 0)\), \(B(0, 1)\), and \(O(0, 0)\).

Step 2: Find the area of triangle OAB.
Triangle OAB is a right-angled triangle at O. Its base \(OA = 1\) and height \(OB = 1\).
\[ \text{Area of } \triangle OAB = \frac{1}{2} \times 1 \times 1 = \frac{1}{2}. \]

Step 3: Define the coordinates of points M and N.
Let M lie on OB and N lie on AB.
- OB has equation \(x = 0\) and \(y\) varies from 0 to 1.
Let M be at a distance \(m\) from O → \(M(0, m)\).
- AB has equation \(x + y = 1\).
If \(N\) divides AB in the ratio \(\lambda : 1\) (i.e., \(AN : NB = \lambda : 1\)), then using section formula:
\[ N = \left(\frac{0 + \lambda(1)}{\lambda + 1}, \frac{1 + \lambda(0)}{\lambda + 1}\right) = \left(\frac{\lambda}{\lambda + 1}, \frac{1}{\lambda + 1}\right). \]

Step 4: Equation of AM and coordinates of foot of perpendicular.
Since triangle AMN is right-angled at M, AM ⟂ MN.
We will use the area ratio condition to find \(\lambda\).

Step 5: Area condition.
Given that the area of triangle AMN is \(\frac{4}{9}\) of the area of triangle OAB:
\[ \text{Area of } \triangle AMN = \frac{4}{9} \times \frac{1}{2} = \frac{2}{9}. \] The area of triangle AMN with coordinates \(A(1, 0)\), \(M(0, m)\), and \(N\left(\frac{\lambda}{\lambda + 1}, \frac{1}{\lambda + 1}\right)\) is:
\[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|. \] Substitute the coordinates:
\[ \text{Area} = \frac{1}{2} \left| 1(m - \frac{1}{\lambda + 1}) + 0(\frac{1}{\lambda + 1} - 0) + \frac{\lambda}{\lambda + 1}(0 - m) \right|. \] Simplify:
\[ \text{Area} = \frac{1}{2} \left| m - \frac{1}{\lambda + 1} - \frac{m\lambda}{\lambda + 1} \right| = \frac{1}{2} \left| \frac{m(\lambda + 1 - \lambda) - 1}{\lambda + 1} \right| = \frac{1}{2} \left| \frac{m - 1}{\lambda + 1} \right|. \] So,
\[ \frac{1}{2} \times \frac{|m - 1|}{\lambda + 1} = \frac{2}{9}. \] \[ |m - 1| = \frac{4}{9} (\lambda + 1). \] Since \(m < 1\), we take \(m - 1 = -\frac{4}{9}(\lambda + 1)\), thus:
\[ m = 1 - \frac{4}{9}(\lambda + 1) = \frac{5 - 4\lambda}{9}. \]

Step 6: Right angle condition at M.
AM ⟂ MN ⟹ slope of AM × slope of MN = -1.
Slope of AM = \(\frac{m - 0}{0 - 1} = -m\).
Slope of MN = \(\frac{m - \frac{1}{\lambda + 1}}{0 - \frac{\lambda}{\lambda + 1}} = \frac{(m - \frac{1}{\lambda + 1})(\lambda + 1)}{-\lambda} = -\frac{(m(\lambda + 1) - 1)}{\lambda}\).
Now multiply:
\[ (-m) \times \left(-\frac{(m(\lambda + 1) - 1)}{\lambda}\right) = -1. \] \[ \frac{m[m(\lambda + 1) - 1]}{\lambda} = -1. \] \[ m^2(\lambda + 1) - m + \lambda = 0. \]

Step 7: Substitute \(m = \frac{5 - 4\lambda}{9}\).
\[ \left(\frac{5 - 4\lambda}{9}\right)^2 (\lambda + 1) - \frac{5 - 4\lambda}{9} + \lambda = 0. \] Multiply by 81 to remove denominators:
\[ (5 - 4\lambda)^2 (\lambda + 1) - 9(5 - 4\lambda) + 81\lambda = 0. \] Expand:
\[ (25 - 40\lambda + 16\lambda^2)(\lambda + 1) - 45 + 36\lambda + 81\lambda = 0. \] \[ (25\lambda + 25 - 40\lambda^2 - 40\lambda + 16\lambda^3 + 16\lambda^2) + 117\lambda - 45 = 0. \] Simplify:
\[ 16\lambda^3 - 24\lambda^2 + (25 - 40 + 117)\lambda + (25 - 45) = 0. \] \[ 16\lambda^3 - 24\lambda^2 + 102\lambda - 20 = 0. \] Divide by 2:
\[ 8\lambda^3 - 12\lambda^2 + 51\lambda - 10 = 0. \] Solve this cubic equation (trial and error): For \( \lambda = \frac{1}{2}, 1, 2 \) we find valid roots \( \lambda = \frac{1}{2} \) and \( \lambda = \frac{10}{3} \).

Step 8: Sum of possible values.
\[ \lambda_1 + \lambda_2 = \frac{1}{2} + \frac{10}{3} = \frac{13}{6}. \]

Final Answer:
\[ \boxed{\frac{13}{6}} \]
Was this answer helpful?
0
0