Step 1: Equation of the ellipse.
The given ellipse is:
\[
\frac{x^2}{9} + \frac{y^2}{4} = 1
\]
Here, \( a^2 = 9 \) and \( b^2 = 4 \).
Step 2: Formula of chord with midpoint \((x_1, y_1)\).
The equation of a chord of the ellipse \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) whose midpoint is \((x_1, y_1)\) is given by:
\[
\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2}
\]
Step 3: Substitute the known values.
Given midpoint \((x_1, y_1) = \left( \frac{5}{2}, \frac{1}{2} \right)\), \(a^2 = 9\), \(b^2 = 4\).
Substitute into the equation:
\[
\frac{x \cdot (5/2)}{9} + \frac{y \cdot (1/2)}{4} = \frac{(5/2)^2}{9} + \frac{(1/2)^2}{4}
\]
Simplify:
\[
\frac{5x}{18} + \frac{y}{8} = \frac{25}{36} + \frac{1}{16}
\]
Step 4: Simplify the right-hand side.
Take the LCM of 36 and 16, which is 144:
\[
\frac{25}{36} + \frac{1}{16} = \frac{100}{144} + \frac{9}{144} = \frac{109}{144}
\]
So, the equation becomes:
\[
\frac{5x}{18} + \frac{y}{8} = \frac{109}{144}
\]
Step 5: Convert to the given form \( \alpha x + \beta y = 109 \).
Multiply through by 144 to remove denominators:
\[
144\left( \frac{5x}{18} + \frac{y}{8} \right) = 109
\]
\[
8 \times 5x + 18 \times y = 109
\]
\[
40x + 18y = 109
\]
Comparing with \( \alpha x + \beta y = 109 \), we get:
\[
\alpha = 40, \, \beta = 18.
\]
Step 6: Find \( \alpha + \beta \).
\[
\alpha + \beta = 40 + 18 = 58.
\]
Final Answer:
\[
\boxed{58}
\]