Let \( f: [0, 3] \to A \) be defined by \( f(x) = 2x^3 - 15x^2 + 36x + 7 \) and \( g: [0, \infty) \to B \) be defined by \( g(x) = \frac{x}{x^{2025} + 1}. \) If both functions are onto and \( S = \{ x \in \mathbb{Z} : x \in A { or } x \in B \} \), then \( n(S) \) is equal to: