The intensity \( I \) of an electromagnetic wave is given by:
\[I = \frac{1}{2} \varepsilon_0 E_0^2 c\]
where \( E_0 = 600 \, \text{Vm}^{-1} \) and \( c = 3 \times 10^8 \, \text{m/s} \).
Substitute the values:
\[I = \frac{1}{2} \times 9 \times 10^{-12} \times (600)^2 \times 3 \times 10^8\]
\[= \frac{9}{2} \times 36 \times 3 = 486 \, \text{W/m}^2\]
List-I EM-Wave | List-II Wavelength Range |
---|---|
(A) Infra-red | (III) 1 mm to 700 nm |
(B) Ultraviolet | (II) 400 nm to 1 nm |
(C) X-rays | (IV) 1 nm to \(10^{-3}\) nm |
(D) Gamma rays | (I) \(<10^{-3}\) nm |
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: