Question:

In $n$ is an odd positive integer and $(1+x +x^2 +x^3)^n =\displaystyle\sum_{r=0}^{3n} a_rx^r$ then $a_0 -a_1+a_2-a_3 +\dots -a_{3n}$ is equal to

Updated On: May 18, 2024
  • $4^n$
  • $1$
  • $-1$
  • $0$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Given, $\left(1+x+x^{2}+x^{3}\right)^{n}=\displaystyle \sum_{r=0}^{3 n} a_{r} x^{r}$ and $n$ is an
odd positive integer.
$\Rightarrow {\left[(1+x)\left(1+x^{2}\right)\right]^{n}=\displaystyle\sum_{r=0}^{3 n} a_{r} x^{r}}$
$\Rightarrow (1+x)^{n}\left(1+x^{2}\right)^{n}=\displaystyle\sum_{r=0}^{3 n} a_{r} x^{r}$
If we take $n=1$,
$\left(1+x+x^{2}+x^{3}\right)=\displaystyle\sum_{r=0}^{3} a_{r} x^{r}$
$=a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}$
On comparing both sides,
$a_{0}=1,\, a_{1}=1,\, a_{2}=1,\, a_{3}=1$...(i)
If we take $n=3$,
$(1+x)^{3}\left(1+x^{2}\right)^{3}=\displaystyle\sum_{r=0}^{9} a_{r} x^{r}$
$\left(1+x^{3}+3 x^{2}+3 x\right)\left(1+x^{6}+3 x^{4}+3 x^{2}\right)$
$=\displaystyle\sum_{r=0}^{9} a_{r} x^{r}\left(1+x^{3}+3 x^{2}+3 x +x^{6}+x^{9}\right.$
$+3 x^{8}+3 x^{7}+3 x^{4}+3 x^{7}+9 x^{6}$
$\left.+9 x^{5}+3 x^{2}+3 x^{5}+9 x^{4}+9 x^{3}\right)$
$=\displaystyle\sum_{r=0}^{9} a_{r} x^{r}\left(1+3 x+6 x^{2}+10 x^{3}+12 x^{4}\right.$
$\left.+12 x^{5}+10 x^{6}+6 x^{7}+3 x^{8}+x^{9}\right)$
$=\displaystyle\sum_{r=0}^{9} a_{r} x^{r}$
On comparing the coefficient of $x$ on both sides;
$a_{0}=1,\, a_{1}=3,\, a_{2}=6,\, a_{3}=10,\, a_{4}=12,\, a_{5}=12$
$a_{6}=10,\, a_{7}=6,\, a_{8}=3,\, a_{9}=1$...(ii)
From E (i), we see that,
$a_{0}-a_{1}+a_{2}-a_{3}=0,$ when $n=1$
From E (ii), we see that,
$a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-a_{5}+ a_{6}-a_{7} +a_{8}-a_{9}=0$
when $n=3$
Similarly, for each odd terms:
$a_{0}-a_{1}+a_{2}-a_{3}+...-a_{3 n}=0$
Was this answer helpful?
0
0

Concepts Used:

Binomial Theorem

The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is 

Properties of Binomial Theorem

  • The number of coefficients in the binomial expansion of (x + y)n is equal to (n + 1).
  • There are (n+1) terms in the expansion of (x+y)n.
  • The first and the last terms are xn and yn respectively.
  • From the beginning of the expansion, the powers of x, decrease from n up to 0, and the powers of a, increase from 0 up to n.
  • The binomial coefficients in the expansion are arranged in an array, which is called Pascal's triangle. This pattern developed is summed up by the binomial theorem formula.