The energy corresponding to the first dip is given as:
\[10.2 \, \text{eV} = \frac{hc}{\lambda}\]
Rearrange to solve for \( \lambda \):
\[\lambda = \frac{1245 \, \text{eV} \cdot \text{nm}}{10.2 \, \text{eV}}\]
\[\lambda = 122.06 \, \text{nm}\]
List I (Spectral Lines of Hydrogen for transitions from) | List II (Wavelength (nm)) | ||
A. | n2 = 3 to n1 = 2 | I. | 410.2 |
B. | n2 = 4 to n1 = 2 | II. | 434.1 |
C. | n2 = 5 to n1 = 2 | III. | 656.3 |
D. | n2 = 6 to n1 = 2 | IV. | 486.1 |
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: