The intensity of light is $I(\theta)=I_0 cos^2 \big(\frac{\delta}{2}\big)$
where, $\hspace20mm \delta=\frac{2 \pi}{\lambda}(\Delta x)$
$\hspace25mm =\big(\frac{2 \pi}{\lambda}\big)(d \, sin \, \theta)$
(a) For $\theta$ = 30$^{\circ}$
$ \, \, \, \, \lambda=\frac{c}{v}=\frac{3 \times 10^8}{10^6}=300 m$ and d = 150 m
$\hspace10mm \delta=\big(\frac{2 \pi}{300}\big)(150)\big(\frac{1}{2}\big)=\frac{\pi}{2}$
$\therefore \, \, \, \, \, \, \, \, \frac{\delta}{2}=\frac{\pi}{4}$
$\therefore \, \, \, \, \, \, \, I(\theta)=I_0 cos^2 \big(\frac{\pi}{4}\big)=\frac{I_0}{2} \hspace10mm$ [option (a)]
(b) For $\theta$=90$^{\circ}$
$\delta=\big(\frac{2 \pi}{300}\big)(150)(1)=\pi \, or \, \, \frac{\delta}{2}=\frac{\pi}{2} \, \, and \, \, I(\theta)=0$
(c) For $\theta=0^\circ,\delta=0 \, \, or \, \, \frac{\delta}{2}=0$
$\therefore I(\theta)=I_0 \hspace35mm$ [option (c)]