Question:

In an increasing geometric progression of positive terms, the sum of the second and sixth terms is \[ \frac{70}{3} \] and the product of the third and fifth terms is 49. Then the sum of the \(4^\text{th}, 6^\text{th}\), and \(8^\text{th}\) terms is:

Updated On: Nov 24, 2024
  • 96
  • 78
  • 91
  • 84
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Given: 
\( T_2 + T_6 = \frac{70}{3} \quad \text{and} \quad T_3 \cdot T_5 = 49. \) Let the first term of the geometric progression be \( a \) and the common ratio be \( r \). 
The second term is: 
\[ T_2 = ar, \] and the sixth term is: 
\[ T_6 = ar^5. \] 

Given: 
\[ ar + ar^5 = \frac{70}{3}. \] Factoring out \( ar \): 
\(ar(1 + r^4) = \frac{70}{3}.\)              (1)

The third term is: 
\[ T_3 = ar^2, \]and the fifth term is: 
\[ T_5 = ar^4.\] 

Given: 
\[ T_3 \times T_5 = ar^2 \times ar^4 = (ar^3)^2 = 49. \] 

Taking the square root: 
\(ar^3 = 7 \implies a = \frac{7}{r^3}.\)               (2)

Substituting the value of \( a \) from equation (2) into equation (1): 
\[ \frac{7}{r^3} \times r \times (1 + r^4) = \frac{70}{3}.\] 

Simplifying: 
\[ \frac{7}{r^2} (1 + r^4) = \frac{70}{3}. \] 

Multiplying both sides by \( 3r^2 \): 
\[ 21(1 + r^4) = 70r^2. \] 

Rearranging terms: 
\[ 21 + 21r^4 = 70r^2. \] 

Dividing by 7: 
\[ 3 + 3r^4 = 10r^2. \] 

Letting \( t = r^2 \), we have: 
\[ 3 + 3t^2 = 10t. \] 

Rearranging: 
\[ 3t^2 - 10t + 3 = 0. \] 

Solving this quadratic equation using the quadratic formula: 
\[ t = \frac{10 \pm \sqrt{100 - 36}}{6} = \frac{10 \pm \sqrt{64}}{6} = \frac{10 \pm 8}{6}.\] This gives: 
\[t = \frac{18}{6} = 3 \quad \text{or} \quad t = \frac{2}{6} = \frac{1}{3}.\] 

Since the GP is increasing, we take \( t = 3 \), 

so: 
\[ r^2 = 3 \implies r = \sqrt{3}. \] Using \( r = \sqrt{3} \) in equation (2): 
\[ a = \frac{7}{(\sqrt{3})^3} = \frac{7}{3\sqrt{3}} = \frac{7\sqrt{3}}{9}. \] Now, we find the sum of the 4th, 6th, and 8th terms: 
\[ T_4 = ar^3, \quad T_6 = ar^5, \quad T_8 = ar^7. \] Calculating: 
\[ T_4 + T_6 + T_8 = ar^3 + ar^5 + ar^7 = ar^3 (1 + r^2 + r^4). \] Substituting values: 
\[ ar^3 = 7, \quad 1 + r^2 + r^4 = 1 + 3 + 9 = 13. \] Thus: 
\[ T_4 + T_6 + T_8 = 7 \times 13 = 91. \] Therefore: 
\[ 91. \]

Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions