To determine the identity of the emitted particles (R) in the given nuclear fission reaction, we need to first understand the principle of nuclear reactions, where both mass numbers and atomic numbers are conserved. The given reaction is:
\(^{92}X^{236} \rightarrow ^{56}Y^{141} + ^{36}Z^{92} + 3R\)
Therefore, the correct answer is the particle "Neutron." This identification fits with common fission reactions where neutrons are usually emitted.
To identify the emitted particles, let us verify the conservation of atomic number (\(Z\)) and mass number (\(A\)).
- Atomic number (\(Z\)):
\[ Z_{\text{LHS}} = 92, \quad Z_{\text{RHS}} = 56 + 36 = 92 \]
\(Z\) is conserved.
- Mass number (\(A\)):
\[ A_{\text{LHS}} = 236, \quad A_{\text{RHS}} = 141 + 92 = 233 \]
The mass number is not conserved. The difference is:
\[ A_{\text{LHS}} - A_{\text{RHS}} = 236 - 233 = 3 \]
The missing mass corresponds to three neutrons (\(R = \text{neutrons}\)).
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R).
 Assertion (A): The binding energy per nucleon is found to be practically independent of the atomic number \( A \), for nuclei with mass numbers between 30 and 170. 
Reason (R): Nuclear force is long range. 
In the light of the above statements, choose the correct answer from the options given below:
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline A. \ ^{236}_{92} U \rightarrow ^{94}_{38} Sr + ^{140}_{54} Xe + 2n & \text{I. Chemical Reaction} \\ \hline B. \ 2H_2 + O_2 \rightarrow 2H_2O & \text{II. Fusion with +ve Q value} \\ \hline C. \ ^3_1 H + ^2_1 H \rightarrow ^4_2 He + n & \text{III. Fission} \\ \hline D. \ ^1_1 H + ^3_1 H \rightarrow ^4_2 H + \gamma & \text{IV. Fusion with -ve Q value} \\ \hline \end{array} \]
Choose the correct answer from the options given below:
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R). 
Assertion (A): The density of the copper ($^{64}Cu$) nucleus is greater than that of the carbon ($^{12}C$) nucleus.
Reason (R): The nucleus of mass number A has a radius proportional to $A^{1/3}$. 
In the light of the above statements, choose the most appropriate answer from the options given below:
Choose the correct nuclear process from the below options:
\( [ p : \text{proton}, n : \text{neutron}, e^- : \text{electron}, e^+ : \text{positron}, \nu : \text{neutrino}, \bar{\nu} : \text{antineutrino} ] \)
Given below are two statements:
Statement (I):
 
 are isomeric compounds. 
Statement (II): 
 are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
