\[ T_{r+1} = \binom{12}{r} \left(\frac{3^{1/5}}{x}\right)^{12-r} \left(\frac{2x}{5^{1/3}}\right)^r \]
\[ T_{r+1} = \binom{12}{r} \frac{3^{12-r}/5}{x^{12-r}} \frac{(2x)^r}{(5)^{r/3}} \]
Given \( r = 6 \), \[ T_7 = \binom{12}{6} \frac{(3^{6/5})(2^6)(x^6)}{x^6 (5^2)} = \binom{12}{6} \frac{3^6 \cdot 2^6}{5^2} \]
Simplifying further, \[ T_7 = \frac{9 \cdot 11 \cdot 7}{25} \cdot 2^8 \cdot 3^{1/5} \]
Finally, equating, \[ 25\alpha = 693 \]
Final Answer: 693
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: