Question:

If $T_0, T_1, T_2.....T_n$ represent the terms in the expansion of $ (x + a)^n$, then $(T_0 -T_2 + T_4 - .......)^2 + (T_1 - T_3 + T_5 - .....)^2 =$

Updated On: May 19, 2022
  • $(x^2 + a^2 )$
  • $(x^2 + a^2 )^n$
  • $(x^2 + a^2 )^{1/n}$
  • $(x^2 + a^2 )^{-1/n}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

From the given condition, replacing a by $ai$
and $- ai$ respectively, we get
$\left(x +ai\right)^{n} = \left(T_{0} - T_{2} + T_{4} - ......\right) + i\left(T_{1} - T_{3 } + T_{5} - .....\right) $ .....(i)
and $ \left(x -ai\right)^{n} =\left(T_{0} -T_{2} +T_{4} - .....\right)-i \left(T_{1} - T_{3} +T_{5} - ....\right)$ ....(ii)
Multiplying (ii) and (i) we get required result i.e.,
$ \left(x^{2} +a^{2}\right)^{n} = \left(T_{0} -T_{2} +T_{4} -....\right)^{2} + \left(T_{1} -T_{3} +T_{5} -....\right)^{2} $
Was this answer helpful?
0
0

Concepts Used:

Binomial Expansion Formula

The binomial expansion formula involves binomial coefficients which are of the form 

(n/k)(or) nCk and it is calculated using the formula, nCk =n! / [(n - k)! k!]. The binomial expansion formula is also known as the binomial theorem. Here are the binomial expansion formulas.

This binomial expansion formula gives the expansion of (x + y)n where 'n' is a natural number. The expansion of (x + y)n has (n + 1) terms. This formula says:

We have (x + y)n = nC0 xn + nC1 xn-1 . y + nC2 xn-2 . y2 + … + nCn yn

General Term = Tr+1 = nCr xn-r . yr

  • General Term in (1 + x)n is nCr xr
  • In the binomial expansion of (x + y)n , the rth term from end is (n – r + 2)th .