The binding energy (\(B.E.\)) of a nucleus is given by:
\[B.E. = \Delta m c^2,\]
where \(\Delta m\) is the mass defect.
The mass defect for the isotope \({}^{12}_5 B\) is:
\[\Delta m = (5M_p + 7M_n) - M_0.\]
Substituting \(\Delta m\) into the binding energy equation:
\[B.E. = (5M_p + 7M_n - M_0)c^2.\]
Thus, the nuclear binding energy of the isotope is:
\[B.E. = (5M_p + 7M_n - M_0)c^2.\]
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: