\[\int \frac{\sec^2 x \, dx}{a^2 \tan^2 x + b^2}\]
Let \( \tan x = t \), then \( \sec^2 x \, dx = dt \).
\[= \int \frac{dt}{a^2 t^2 + b^2}\]
\[= \frac{1}{a^2} \int \frac{dt}{t^2 + \left( \frac{b}{a} \right)^2}\]
\[= \frac{1}{ab} \tan^{-1} \left( \frac{ta}{b} \right) + c\]
\[= \frac{1}{ab} \tan^{-1} \left( \frac{a}{b} \tan x \right) + c\]
On comparing, \( \frac{a}{b} = 3 \).
\[ab = 12\]
\[a = 6, \quad b = 2\]
Maximum Value:
The maximum value of \( 6 \sin x + 2 \cos x \) is \( \sqrt{40} \).
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: