The given function is:
\( f(x) = x^3 \sin\left(\frac{1}{x}\right) - x \cos\left(\frac{1}{x}\right). \)
The second derivative of \( f(x) \) is computed as:
\( f''(x) = 6x \sin\left(\frac{1}{x}\right) - 3 \cos\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) + \sin\left(\frac{1}{x}\right) \left(-\cos\left(\frac{1}{x}\right)\right). \)
Substitute \( x = \frac{2}{\pi} \):
\( f''\left(\frac{2}{\pi}\right) = 6\left(\frac{2}{\pi}\right) \sin\left(\frac{\pi}{2}\right) - 3 \cos\left(\frac{\pi}{2}\right) - \cos\left(\frac{\pi}{2}\right). \)
Simplify:
\( f''\left(\frac{2}{\pi}\right) = \frac{12}{\pi} - \frac{\pi^2}{2\pi} = \frac{24 - \pi^2}{2\pi}. \)
Thus, the final value is:
\( f''\left(\frac{2}{\pi}\right) = \frac{24 - \pi^2}{2\pi}. \)
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: