To solve the problem, we need to analyze the progression and conditions given:
\(a_n = \frac{a_{n+1} + a_{n+2}}{2}\)
\(a_3 = a_1 \cdot r^2\)
\(a_4 = a_1 \cdot r^3\)
\(\frac{r}{8} = \frac{\frac{1}{8} \cdot r^2 + \frac{1}{8} \cdot r^3}{2}\)
\(\Rightarrow r = r^2 + r^3 \Rightarrow r^3 + r^2 - r = 0\)
\(r(r^2 + r - 1) = 0\)
Since \( r \neq 0 \), we solve \( r^2 + r - 1 = 0 \). Using the quadratic formula:
\(r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1 + 4}}{2} = \frac{-1 \pm \sqrt{5}}{2}\)
\(S_n = \frac{a_1(r^n - 1)}{r - 1}\)
\(S_{20} - S_{18} = a_1(r^{19} + r^{20}) = \frac{1}{8}(r^{19} + r^{20})\)
\(r^{19} + r^{20} = (r^{18} \cdot r) + (r^{18} \cdot r^2) = r^{18} \cdot (r + r^2) = r^{18} = -2^{15}\)
The answer is, therefore, \(-2^{15}\), which is option \( -2^{15} \).
Let the r-th term of the geometric progression (GP) be \( ar^{r-1} \).
Step 1. Given condition: Since each term is the arithmetic mean of the next two terms, we have:  
  \(2a_r = a_{r+1} + a_{r+2}\)
  Substituting the terms, this becomes:  
  \(2ar^{r-1} = ar^r + ar^{r+1}\)
  Dividing by \( ar^{r-1} \) (assuming \( a \neq 0 \)), we get:  
  \(2 = r + r^2\)
Step 2. Solve for \( r \): Rearranging, we have:  
  [\(r^2 + r - 2 = 0\)
   Factoring, we get:  
   \((r - 1)(r + 2) = 0\)
  Thus, \( r = 1 \) or \( r = -2 \). Since \( a_2 \neq a_1 \), \( r \neq 1 \), so \( r = -2 \).
Step 3. Calculate \( S_{20} - S_{18} \): Since the sum of the first \( n \) terms of a GP is given by  
\(S_n = \frac{a(r^n - 1)}{r - 1},\) 
  we find \( S_{20} \) and \( S_{18} \):  
  \(S_{20} = \frac{1}{-2}((-2)^{20} - 1), \quad S_{18} = \frac{1}{-2}((-2)^{18} - 1).\)
 Therefore,
\(S_{20} - S_{18} = \frac{1}{-2}((-2)^{20} - (-2)^{18})\)
Simplifying, we get:  
\(S_{20} - S_{18} = -2^{15}.\)
The Correct Answer is:\( -2^{15} \).
Given below are two statements:
Statement (I):
 
 are isomeric compounds. 
Statement (II): 
 are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
