Step 1: Find \( \sin(\alpha) \) and \( \cos(\alpha) \). Given \( \tan(\alpha) = \frac{1}{7} \), we calculate \( \sin(\alpha) \) and \( \cos(\alpha) \) using the identity \( \tan^2(\alpha) + 1 = \sec^2(\alpha) \).
Step 2: Find \( \sin(\beta) \) and \( \cos(\beta) \). Given \( \sin(\beta) = \frac{1}{\sqrt{10}} \), we calculate \( \cos(\beta) \) using the identity \( \sin^2(\beta) + \cos^2(\beta) = 1 \).
Step 3: Apply the angle addition formula for \( \sin(2\alpha + \beta) \). We use the identity \( \sin(2\alpha + \beta) = \sin(2\alpha) \cos(\beta) + \cos(2\alpha) \sin(\beta) \), and the double angle formulas for sine and cosine to calculate the value of \( \sin(2\alpha + \beta) \).
Step 4: Final result. The final result is: \[ \sin(2\alpha + \beta) = \frac{3 \times \sqrt{10}}{25}. \]
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: