Find:$\displaystyle \int \dfrac{dx}{\sin x + \sin 2x}$
We are given:
$\displaystyle \int \dfrac{dx}{\sin x + \sin 2x}$
Step 1: Use the identity:
$\sin 2x = 2 \sin x \cos x$
So the denominator becomes:
$\sin x + \sin 2x = \sin x + 2 \sin x \cos x = \sin x (1 + 2 \cos x)$
Now the integral becomes:
$\displaystyle \int \dfrac{dx}{\sin x (1 + 2 \cos x)}$
Step 2: Use substitution:
Let $u = \cos x \Rightarrow du = -\sin x \, dx \Rightarrow -du = \sin x \, dx$
Substitute into the integral:
$\displaystyle \int \dfrac{dx}{\sin x (1 + 2 \cos x)} = \int \dfrac{-du}{(1 + 2u)}$
Step 3: Integrate:
$\displaystyle \int \dfrac{-du}{1 + 2u} = -\int \dfrac{du}{1 + 2u}$
Use the substitution $v = 1 + 2u \Rightarrow dv = 2 \, du \Rightarrow du = \dfrac{dv}{2}$
$\displaystyle -\int \dfrac{1}{v} \cdot \dfrac{dv}{2} = -\dfrac{1}{2} \int \dfrac{dv}{v} = -\dfrac{1}{2} \ln |v| + C$
Back-substitute:
$v = 1 + 2u = 1 + 2 \cos x$
Final Answer:
$\boxed{ -\dfrac{1}{2} \ln |1 + 2 \cos x| + C }$
Evaluate:
$\displaystyle \int_{0}^{3} x \cos(\pi x) \, dx$
(a) Calculate the standard Gibbs energy (\(\Delta G^\circ\)) of the following reaction at 25°C:
\(\text{Au(s) + Ca\(^{2+}\)(1M) $\rightarrow$ Au\(^{3+}\)(1M) + Ca(s)} \)
\(\text{E\(^\circ_{\text{Au}^{3+}/\text{Au}} = +1.5 V, E\)\(^\circ_{\text{Ca}^{2+}/\text{Ca}} = -2.87 V\)}\)
\(\text{1 F} = 96500 C mol^{-1}\)
Define the following:
(i) Cell potential
(ii) Fuel Cell
Calculate the emf of the following cell at 25°C:
\[ \text{Zn(s)} | \text{Zn}^{2+}(0.1M) || \text{Cd}^{2+}(0.01M) | \text{Cd(s)} \] Given: \[ E^\circ_{\text{Cd}^{2+}/\text{Cd}} = -0.40 \, V, \, E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.76 \, V \] \[ [\log 10 = 1] \]