Evaluate:
$\displaystyle \int_{0}^{3} x \cos(\pi x) \, dx$
To evaluate:
$\displaystyle \int_{0}^{3} x \cos(\pi x) \, dx$
Step 1: Use integration by parts
Let:
Using the formula:
$\displaystyle \int u \, dv = uv - \int v \, du$
Apply the limits:
$\displaystyle \int_{0}^{3} x \cos(\pi x) \, dx = \left[ x \cdot \dfrac{1}{\pi} \sin(\pi x) \right]_0^3 - \int_{0}^{3} \dfrac{1}{\pi} \sin(\pi x) \, dx$
Evaluate the first term:
$\left[ \dfrac{x \sin(\pi x)}{\pi} \right]_0^3 = \dfrac{3 \sin(3\pi)}{\pi} - \dfrac{0 \cdot \sin(0)}{\pi} = \dfrac{3 \cdot 0}{\pi} = \mathbf{0}$
Evaluate the second term:
$\displaystyle \int_{0}^{3} \dfrac{1}{\pi} \sin(\pi x) \, dx = \dfrac{1}{\pi} \left[ -\dfrac{1}{\pi} \cos(\pi x) \right]_0^3 = -\dfrac{1}{\pi^2} \left[ \cos(3\pi) - \cos(0) \right]$
$= -\dfrac{1}{\pi^2} \left[ -1 - 1 \right] = -\dfrac{1}{\pi^2} (-2) = \mathbf{\dfrac{2}{\pi^2}}$
Final Answer:
$\displaystyle \int_{0}^{3} x \cos(\pi x) \, dx = \mathbf{0 + \dfrac{2}{\pi^2} = \dfrac{2}{\pi^2}}$
Find:$\displaystyle \int \dfrac{dx}{\sin x + \sin 2x}$
(a) Calculate the standard Gibbs energy (\(\Delta G^\circ\)) of the following reaction at 25°C:
\(\text{Au(s) + Ca\(^{2+}\)(1M) $\rightarrow$ Au\(^{3+}\)(1M) + Ca(s)} \)
\(\text{E\(^\circ_{\text{Au}^{3+}/\text{Au}} = +1.5 V, E\)\(^\circ_{\text{Ca}^{2+}/\text{Ca}} = -2.87 V\)}\)
\(\text{1 F} = 96500 C mol^{-1}\)
Define the following:
(i) Cell potential
(ii) Fuel Cell
Calculate the emf of the following cell at 25°C:
\[ \text{Zn(s)} | \text{Zn}^{2+}(0.1M) || \text{Cd}^{2+}(0.01M) | \text{Cd(s)} \] Given: \[ E^\circ_{\text{Cd}^{2+}/\text{Cd}} = -0.40 \, V, \, E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.76 \, V \] \[ [\log 10 = 1] \]
Write chemical equations of the following reactions:
(i) Phenol is treated with conc. HNO\(_3\)
(ii) Propene is treated with B\(_2\)H\(_6\) followed by oxidation by H\(_2\)O\(_2\)/OH\(^-\)
(iii) Sodium t-butoxide is treated with CH\(_3\)Cl
Give a simple chemical test to distinguish between butan-1-ol and butan-2-ol.