The torque \( \tau \) on a current-carrying coil in a magnetic field is given by: \[ \tau = n I A B \sin \theta \]
where:
\( n \) is the number of turns of the coil,
- \( I \) is the current,
- \( A \) is the area of the coil,
- \( B \) is the magnetic field strength,
- \( \theta \) is the angle between the magnetic field and the normal to the coil.
Initially, when the coil is in the vertical plane (\( \theta = 90^\circ \)), the torque is: \[ \tau_1 = n I A B \sin 90^\circ = n I A B \] Substituting the known values: \[ 0.12 = 60 \times 2 \times 1.5 \times 10^{-3} \times B \] Solving for \( B \): \[ B = \frac{0.12}{60 \times 2 \times 1.5 \times 10^{-3}} = 0.67 \, \text{T} \] Thus, the magnitude of the magnetic field is \( 0.67 \, \text{T} \).
A current-carrying coil is placed in an external uniform magnetic field. The coil is free to turn in the magnetic field. What is the net force acting on the coil? Obtain the orientation of the coil in stable equilibrium. Show that in this orientation the flux of the total field (field produced by the loop + external field) through the coil is maximum.
Answer the following questions:
(a)
OR
(b) Name the two events ‘a’ and ‘c’ shown in the diagram below.