\[ \text{Bank A/c Dr.} ₹ 16,80,000 \\ \text{To Share Application A/c} ₹ 16,80,000 \] (2,40,000 × ₹7)
\[ \text{Share Application A/c Dr.} ₹ 16,80,000 \\ \text{To Share Capital A/c} ₹ 12,00,000 \\ \text{To Securities Premium A/c} ₹ 1,20,000 \\ \text{To Bank A/c (excess refund)} ₹ 3,60,000 \]
\[ \text{Share First and Final Call A/c Dr.} ₹ 11,90,000 \\ \text{To Share Capital A/c} ₹ 10,20,000 \\ \text{To Securities Premium A/c} ₹ 1,70,000 \]
\[ \text{Bank A/c Dr.} ₹ 11,62,000 \\ \text{To Share First and Final Call A/c} ₹ 11,62,000 \]
\[ \text{Share Capital A/c Dr.} ₹ 40,000 \\ \text{Securities Premium A/c Dr.} ₹ 12,000 \\ \text{To Share Forfeiture A/c} ₹ 28,000 \\ \text{To Share First and Final Call A/c} ₹ 24,000 \]
\[ \text{Bank A/c Dr.} ₹ 16,000 \\ \text{Share Forfeiture A/c Dr.} ₹ 24,000 \\ \text{To Share Capital A/c} ₹ 40,000 \]
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
For the curve \( \sqrt{x} + \sqrt{y} = 1 \), find the value of \( \frac{dy}{dx} \) at the point \( \left(\frac{1}{9}, \frac{1}{9}\right) \).