\[ 22\text{Ti}^{2+} \rightarrow [\text{Ar}]3d^2 \quad 23\text{V}^{2+} \rightarrow [\text{Ar}]3d^3 \quad 25\text{Mn}^{2+} \rightarrow [\text{Ar}]3d^5 \quad 26\text{Fe}^{2+} \rightarrow [\text{Ar}]3d^6 \]
The spin-only magnetic moment is given by:
\[ \mu_s = \sqrt{n(n+2)} \, \text{BM}, \]
where \(n\) is the number of unpaired electrons.
For \(\mu_s = 3.86 \, \text{BM}\):
\[ 3.86 = \sqrt{n(n+2)}. \]
Squaring both sides:
\[ 3.86^2 = n(n+2) \implies 14.9 \approx n(n+2). \]
Solving for \(n\),
we find: \[ n = 3. \]
The element with \(n = 3\) unpaired electrons in its \(+2\) oxidation state can be identified as follows: Configuration in \(+2\) state:
\[ 22\text{Ti}^{2+} \rightarrow [\text{Ar}]3d^2 \, (n=2), \quad 23\text{V}^{2+} \rightarrow [\text{Ar}]3d^3 \, (n=3), \quad 25\text{Mn}^{2+} \rightarrow [\text{Ar}]3d^5 \, (n=5), \quad 26\text{Fe}^{2+} \rightarrow [\text{Ar}]3d^6 \, (n=4). \]
Thus, the element is \(V\) (Vanadium) with atomic number 23.
List-I Alkali Metal | List-II Emission Wavelength in nm |
---|---|
(A) Li | (I) 589.2 |
(B) Na | (II) 455.5 |
(C) Rb | (III) 670.8 |
(D) Cs | (IV) 780.0 |
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: