Since the cyclist travels along the circumference from point P to point S, which are opposite ends of the diameter of the circle, we can visualize the displacement as the straight-line distance between P and S.
1. Determine the Displacement:
Using the Pythagorean theorem, we find:
\[ \text{Displacement} = R\sqrt{2} = 2\sqrt{2} = \sqrt{8} \, \text{km}. \]
Answer: \(\sqrt{8} \, \text{km}\)
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: