Select Goal &
City
Select Goal
Search for Colleges, Exams, Courses and More..
Write a Review
Get Upto ₹500*
Explore
Explore More
Study Abroad
Get upto 50% discount on Visa Fees
Top Universities & Colleges
Abroad Exams
Top Courses
Exams
Read College Reviews
News
Admission Alerts 2024
Education Loan
Institute (Counselling, Coaching and More)
Ask a Question
College Predictor
Test Series
Practice Questions
Course Finder
Scholarship
All Courses
B.Tech
MBA
M.Tech
MBBS
B.Com
B.Sc
B.Sc (Nursing)
BA
BBA
BCA
Course Finder
No Data Found
>
Mathematics
List of top Mathematics Questions on Series
If \[1 + \frac{\sqrt{3} - \sqrt{2}}{2\sqrt{3}} + \frac{5 - 2\sqrt{6}}{18} + \frac{9\sqrt{3} - 11\sqrt{2}}{36\sqrt{3}} + \frac{49 - 20\sqrt{6}}{180} + \cdots\] up to \(\infty = 2 \left( \sqrt{\frac{b}{a}} + 1 \right) \log_e \left( \frac{a}{b} \right)\), where \(a\) and \(b\) are integers with \(\gcd(a, b) = 1\), then (11a + 18b\) is equal to _________.
JEE Main - 2024
JEE Main
Mathematics
Series
The sum $\displaystyle\sum_{n=1}^{21} \frac{3}{(4 n-1)(4 n+3)}$ is equal to
JEE Main - 2023
JEE Main
Mathematics
Series
If the sum of the series
\(\left(\frac{1}{2}-\frac{1}{3}\right) + \left(\frac{1}{2^2}-\frac{1}{2·3} + \frac{1}{3^2}\right) + \left(\frac{1}{2^2}-\frac{1}{2^2·3} + \frac{1}{2·3^2} - \frac{1}{3^3}\right) + \left(\frac{1}{2^4}-\frac{1}{2^3·3} + \frac{1}{2^2·3^2} - \frac{1}{2·3^3} + \frac{1}{3^4}\right) + ........ \)
is
\(\frac{α}{β}\)
, where α and β are co-prime, then α+3β is equal to ________
JEE Main - 2023
JEE Main
Mathematics
Series
Let $S$ be the set of all values of $a_1$ for which the mean deviation about the mean of $100$ consecutive positive integers $a_1, a_2, a_3, \ldots , a_{100}$ is $25$ Then $S$ is
JEE Main - 2023
JEE Main
Mathematics
Series
Let a
n
be the n
th
term of the series 5 + 8 + 14 + 23 + 35 + 50 +.... and Sn = \(\displaystyle\sum_{k=1}^{n} a_k.\) Then S
30
- a
40
is equal to
JEE Main - 2023
JEE Main
Mathematics
Series
If $x = \frac{3}{10} + \frac{3.7}{10.15} + \frac{3.7.9}{10.15.20} + $ ...., then $5x + 8$ =
AP EAMCET - 2019
AP EAMCET
Mathematics
Series
If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ are in A.P. where $a_{i}>0$ for all $i$, then $\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\ldots .+$ $\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}$ is?
BITSAT - 2019
BITSAT
Mathematics
Series
The sum of the series
$S = \frac{1}{19! } + \frac{1}{3!7!} + \frac{1}{5! 5!} + ... $
to 10 terms is equal to :
JEE Main - 2018
JEE Main
Mathematics
Series
If $\omega$ is the complex cube root of unity, then the value of $\omega+\omega\left(\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\frac{27}{128}+\ldots \ldots\right)$
BITSAT - 2015
BITSAT
Mathematics
Series
For all real
$ x, 4^{sin^2x}+ 4cos^{2x} $
is
AMUEEE - 2015
AMUEEE
Mathematics
Series
Let
$ V_r $
denote the sum of the first
$ r $
terms of an arithmetic progression
$ (AP) $
whose first term is
$ r $
and the common difference is
$ (2r - 1) $
. The sum
$ V_1 + V_2 + ..... + V_n $
is
AMUEEE - 2014
AMUEEE
Mathematics
Series
The sum of the series $ \displaystyle\sum_{r = 0}^{n}\left(-1\right)^{r}\, ^{n}C_{r}\left(\frac{1}{2^{r}}+\frac{3^{r}}{2^{2r}}+\frac{7^{r}}{2^{3r}}+\frac{15^{r}}{2^{4r}}+...m \text{terms}\right)$ is
VITEEE - 2013
VITEEE
Mathematics
Series
If the sum of first
$ n $
natural numbers is
$ 1/5 $
times the sum of their squares, then
$ n $
is equal to
AMUEEE - 2012
AMUEEE
Mathematics
Series
The
$n^{th}$
term of the series
$1+3 + 7 + 13 + 21 + $
is
$9901$
. The value of
$n$
is ................
KCET - 2010
KCET
Mathematics
Series
If $x > 0$ and $\log_{3} x+\log_{3}\left(\sqrt{x}\right)+\log_{3}\left(\sqrt[4]{x}\right)+\log_{3}\sqrt[8]{x}+\log_{3}\left(\sqrt[16]{x}\right)+....=4,$ then x equals
VITEEE - 2007
VITEEE
Mathematics
Series
If
$a_1,a_2,...,a_n$
are positive real numbers whose product is a fixed number c, then the minimum value of
$ a_1 + a_2 +...+ a_{n-1}+2a_n$
is
JEE Advanced - 2002
JEE Advanced
Mathematics
Series
The sum to $10$ terms of the series $\frac{1}{1+1^2+1^4}+\frac{2}{1+2^2+2^4}+\frac{3}{1+3^2+3^4}+\ldots $ is
JEE Main
Mathematics
Series
Let
$ {{a}_{n}}={{i}^{{{(n+1)}^{2}}}}, $
where
$ i=\sqrt{-1} $
and
$ n=1,2,3..... $
. Then the value of
$ {{a}_{1}}+{{a}_{3}}+{{a}_{5}}+...+{{a}_{25}} $
is
KEAM
Mathematics
Series