Select Goal &
City
Select Goal
Search for Colleges, Exams, Courses and More..
Write a Review
Get Upto ₹500*
Explore
Explore More
Study Abroad
Get upto 50% discount on Visa Fees
Top Universities & Colleges
Abroad Exams
Top Courses
Exams
Read College Reviews
News
Admission Alerts 2024
Education Loan
Institute (Counselling, Coaching and More)
Ask a Question
College Predictor
Test Series
Practice Questions
Course Finder
Scholarship
All Courses
B.Tech
MBA
M.Tech
MBBS
B.Com
B.Sc
B.Sc (Nursing)
BA
BBA
BCA
Course Finder
No Data Found
>
JKCET
>
Mathematics
List of top Mathematics Questions on Integrals of Some Particular Functions asked in JKCET
Here,
$ [x] $
denotes the greatest integer less than or equal to
$ x $
. Given that
$ f(x) = [x] + x $
. The value obtained when this function is integrated with respect to
$ x $
with lower limit as
$ \frac{3}{2} $
and upper limit as
$ \frac{9}{2} $
, is
JKCET - 2017
JKCET
Mathematics
Integrals of Some Particular Functions
$ \int \frac{1}{e^{2\theta}+e^{-2\theta}} d\theta= $
JKCET - 2016
JKCET
Mathematics
Integrals of Some Particular Functions
$ \int\left(sec\,x\right)log \left(sec\,x-tan\,x\right)dx= $
JKCET - 2016
JKCET
Mathematics
Integrals of Some Particular Functions
The value of integral
\(\int{e^x}(\frac{cosx+sinx}{cos^2x})dx\)
JKCET - 2016
JKCET
Mathematics
Integrals of Some Particular Functions
Integrate
$ \frac{{{\sec }^{2}}\,({{\sin }^{-1}}x)}{\sqrt{1-{{x}^{2}}}} $
JKCET - 2014
JKCET
Mathematics
Integrals of Some Particular Functions
If
$ f(x)={{\log }_{e}}\,(1+x)-{{\log }_{e}}(1-x), $
then the value of
$ \int_{-1/2}^{1/2}{f(x)\,\,\,dx} $
equals to
JKCET - 2012
JKCET
Mathematics
Integrals of Some Particular Functions
If
$ f(x)=\int_{1}^{x}{\sqrt{4-{{t}^{2}}}}\,\,\,dt, $
then real roots of the equation
$ x-f'(x)=0 $
are
JKCET - 2012
JKCET
Mathematics
Integrals of Some Particular Functions
$ \int_{0}^{\pi /2}{\frac{{{\sin }^{100}}x}{{{\sin }^{100}}x+{{\cos }^{100}}x}\,\,dx} $
is equal to
JKCET - 2010
JKCET
Mathematics
Integrals of Some Particular Functions
$ \int{{{x}^{2}}\,{{7}^{x}}\,\,dx} $
is equal to
JKCET - 2010
JKCET
Mathematics
Integrals of Some Particular Functions
$ \int_{0}^{x}{\log \,(\cot \,x\,+\,\tan t)\,dt} $
=
JKCET - 2009
JKCET
Mathematics
Integrals of Some Particular Functions
If
$ f\,(x)=\underset{y\to x}{\mathop{lim}}\,\,\frac{{{\sin }^{2}}y-{{\sin }^{2}}x}{{{y}^{2}}-{{x}^{2}}}, $
then
$ \int{4x\,\,f(x)\,\,dx} $
=
JKCET - 2009
JKCET
Mathematics
Integrals of Some Particular Functions
$ 3a{{\int_{0}^{1}{\left( \frac{ax-1}{a-1} \right)}}^{2}}\,\,dx $
is equal to
JKCET - 2008
JKCET
Mathematics
Integrals of Some Particular Functions
$ \int{\frac{1}{1+\cos \,\,ax}}\,\,dx $
is equal to
JKCET - 2007
JKCET
Mathematics
Integrals of Some Particular Functions