Let the common tangents to the curves 4(x2 + y2) = 9 and y2 = 4x intersect at the point Q. Let an ellipse, centered at the origin O, has lengths of semi-minor and semi-major axes equal to OQ and 6, respectively. If e and I respectively denote the eccentricity and the length of the latus rectum of this ellipse, then \(\frac{1}{e^2}\) is equal to
Let the tangent drawn to the parabola y2 = 24x at the point (α, β) is perpendicular to the line 2x + 2y = 5. Then the normal to the hyperbola\(\frac{x^2}{α^2}−\frac{y^2}{β^2}=1\)at the point (α + 4, β + 4) does NOT pass through the point
An ellipse\(E:\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)passes through the vertices of the hyperbola\(H:\frac{x^2}{49} - \frac{y^2}{64} = -1\)Let the major and minor axes of the ellipse E coincide with the transverse and conjugate axes of the hyperbola H, respectively. Let the product of the eccentricities of E and H be 1/2. If the length of the latus rectum of the ellipse E, then the value of 113l is equal to _____.