A, B, C are three mutually disjoint exhaustive events with $P(A) \neq 0$, $P(B) \neq 0$, $P(C) \neq 0$. $E$ is any arbitrary event. If $P(A) = \dfrac{4}{9}$, $P(B) = \dfrac{2}{9}$, $P(E|A) = \dfrac{3}{10}$,
$P(E|B) = \dfrac{5}{10}$, $P(E|C) = \dfrac{8}{10}$, and $P(E) = \dfrac{12}{23}$, then $P(C) =$