(i) Radius of cone =\(\frac{28}{2}\) cm = 14 cm
Let the height of the cone be h.
Volume of cone = 9856 cm3
\(⇒\frac{1}{3}\pi\)r²h = 9856 cm3
h \(= \frac{9856\ cm^3 × 3}{\pi r²}\)
\(= \frac{9856\ cm^3 × 3}{(14\ cm × 14\ cm) }× \frac{7}{22}\)
= 48 cm
So, the height of the cone is 48 cm.
(ii) Slant height of the cone, \(l = \sqrt{r² + h²}\)
\(= \sqrt{(14)² + (48)²}\)
\(= \sqrt{196 + 2304}\)
\(= \sqrt{2500}\)
= 50 cm
So, the slant height of the cone is 50 cm.
(iii) Curved surface area of the cone= \(\pi\)rl
\(= \frac{22}{7}\)× 14 cm × 50 cm
= 2200 cm²
Therefore, the curved surface area of the cone is 2200 cm2 .
Factorise each of the following:
(i) 8a 3 + b 3 + 12a 2b + 6ab2
(ii) 8a 3 – b 3 – 12a 2b + 6ab2
(iii) 27 – 125a 3 – 135a + 225a 2
(iv) 64a 3 – 27b 3 – 144a 2b + 108ab2
(v) 27p 3 – \(\frac{1}{ 216}\) – \(\frac{9 }{ 2}\) p2 + \(\frac{1 }{4}\) p
Find the value of the polynomial 5x – 4x 2 + 3 at
(i) x = 0 (ii) x = –1 (iii) x = 2