Question:

The value of the integral $ \int{\frac{1}{{{e}^{2x}}+{{e}^{-2x}}}}\,\,dx $ is equal to

Updated On: Jun 23, 2024
  • $ 2\,{{\tan }^{-1}}\,({{e}^{2x}})+C $
  • $ {{\tan }^{-1}}\,({{e}^{2x}})+C $
  • $ \frac{1}{2}{{\tan }^{-1}}\,({{e}^{2x}})+C $
  • $ \frac{-1}{{{({{e}^{2x}}+{{e}^{-2x}})}^{2}}}+C $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

$ \int{\frac{dx}{{{e}^{2x}}+{{e}^{-2x}}}}\Rightarrow \,\int{\frac{{{e}^{2x}}}{{{e}^{4x}}+1}}dx $
$ =\int{\frac{{{e}^{2x}}}{1+{{({{e}^{2x}})}^{2}}}}dx, $
put $ t={{e}^{2x}} $ $ dt=2{{e}^{2x}}\,dx $
$ \Rightarrow $ $ \int{\frac{dt}{2(1+{{t}^{2}})}}=\frac{1}{2}{{\tan }^{-1}}t+C $
$ \Rightarrow $ $ =\frac{1}{2}{{\tan }^{-1}}({{e}^{2x}})+C $
Was this answer helpful?
0
0