Question:

The value of $k \in \mathbb{N}$ for which the integral \[ I_n = \int_0^1 (1 - x^k)^n \, dx, \, n \in \mathbb{N}, \] satisfies $147 \, I_{20} = 148 \, I_{21}$ is:

Updated On: Nov 24, 2024
  • 10
  • 8
  • 14
  • 7
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The given integral is:
\[ I_n = \int_0^1 (1 - x^k)^n dx. \]
Using integration by parts, we get:
\[ I_n = \frac{nk}{nk + 1} I_{n-1}. \]
Iterating this formula, the relationship becomes:
\[ \frac{I_n}{I_{n-1}} = \frac{nk}{nk + 1}. \]
Given:
\[ \frac{I_{21}}{I_{20}} = \frac{147}{148}, \]
we substitute into the formula:
\[ \frac{21k}{21k + 1} = \frac{147}{148}. \]
Cross-multiplying and solving:
\[ 148 \cdot 21k = 147 \cdot (21k + 1), \]
\[ 148 \cdot 21k = 147 \cdot 21k + 147, \]
\[ 21k = 147 \implies k = 7. \]

Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions