Step 1: Use the standard exponential limit.
Recall $\displaystyle \lim_{x\to\infty}\left(1+\frac{k}{x}\right)^{x}=e^{k}$.
Step 2: Match the form.
Here $\left(1+\dfrac{2}{3x}\right)^{x}=\left(1+\dfrac{\tfrac{2}{3}}{x}\right)^{x}$, so $k=\tfrac{2}{3}$.
Step 3: Evaluate the limit.
Therefore $\displaystyle \lim_{x\to\infty}\left(1+\dfrac{\tfrac{2}{3}}{x}\right)^{x}=e^{\tfrac{2}{3}}$.
Step 4: Conclusion.
The required value is $e^{\tfrac{2}{3}}$.
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
Match Fibre with Application.\[\begin{array}{|l|l|} \hline \textbf{LIST I} & \textbf{LIST II} \\ \textbf{Fibre} & \textbf{Application} \\ \hline \hline \text{A. Silk fibre} & \text{I. Fire retardant} \\ \hline \text{B. Wool fibre} & \text{II. Directional lustre} \\ \hline \text{C. Nomex fibre} & \text{III. Bulletproof} \\ \hline \text{D. Kevlar fibre} & \text{IV. Thermal insulation} \\ \hline \end{array}\]