Question:

The value of $\int \frac{10^{x/2}}{\sqrt{10^{-x} - 10^{x}}}dx$ is

Updated On: May 12, 2024
  • $\frac{1}{\log_{e} 10} \sin^{-1} \left(10^{x} \right)+c $
  • $2\sqrt{10^{-x} + 10^{x} } +c $
  • $\frac{1}{\log_{e} 10}\sinh^{-1} \left(10x\right)+c$
  • $\frac{-1}{\log_{e} 10}\sinh^{-1} \left(10x\right)+c$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Let $I =\int \frac{10^{\frac{x}{2}}}{\sqrt{10^{-x} -10^{x}} } dx = \int \frac{10^{\frac{x}{2}}}{\sqrt{\frac{1-10^{2x}}{10^{x}}}} dx $
$= \int \frac{10^{\frac{x}{2}} .10^{\frac{x}{2}}}{\sqrt{1-\left(10^{x}\right)^{2}}} dx = \int\frac{10^{x} }{\sqrt{1-\left(10^{x}\right)^{2}}}dx $
Put $10^{x} =t \Rightarrow 10^{x} \log10 dx =dt $
$\therefore \, \, I = \frac{1}{\log 10} \int \frac{dt}{\sqrt{1-t^{2}} } = \frac{1}{\log 10}\left(\sin^{-1} t\right)+c $
$= \frac{1}{\log 10}\sin^{-1} \left(10^{x}\right)+c $
Was this answer helpful?
0
0

Top Questions on Methods of Integration

View More Questions

Concepts Used:

Methods of Integration

Given below is the list of the different methods of integration that are useful in simplifying integration problems:

Integration by Parts:

 If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:

∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C

Here f(x) is the first function and g(x) is the second function.

Method of Integration Using Partial Fractions:

The formula to integrate rational functions of the form f(x)/g(x) is:

∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx

where

f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and

g(x) = q(x).s(x)

Integration by Substitution Method

Hence the formula for integration using the substitution method becomes:

∫g(f(x)) dx = ∫g(u)/h(u) du

Integration by Decomposition

Reverse Chain Rule

This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,

∫g'(f(x)) f'(x) dx = g(f(x)) + C

Integration Using Trigonometric Identities