\(100,000(1−\frac {4}{100})(1+\frac {}{100})>100,000\)
\((1−\frac {4}{100})(1+\frac {x}{100})>1\)
\((100−y)(100+x)>10,000\)
Since, \(x−y=10\)
\(⇒x=y+10\)
\((100−y)(100+y+10)>10000\)
\(−100y+100y−y2+1000−10y>0\)
\(y^2+10y−1000<0\)
\(y2+2⋅5⋅y+25−1025<0\)
\(y2+2⋅5⋅y+25<1025\)
\((y+5)^2<1025\)
\(y+5<\sqrt {1025}\)
\(y+5≤32.015\)
\(y+5≃32\)
For the minimum population in 2021, we need y to be as large as possible.
largest value of \(y=32−5=27\)
Now, the minimum population in 2021,
\(=100,000(1−\frac {27}{100})\)
\(=100,000 \times \frac {27}{100}\)
\(=73,000\)
So, the correct option is (C): \(73000\)
List-I | List-II |
---|---|
(A) Confidence level | (I) Percentage of all possible samples that can be expected to include the true population parameter |
(B) Significance level | (III) The probability of making a wrong decision when the null hypothesis is true |
(C) Confidence interval | (II) Range that could be expected to contain the population parameter of interest |
(D) Standard error | (IV) The standard deviation of the sampling distribution of a statistic |