Let \(\vec{a}, \vec{b}, \vec{c}\)
be three coplanar concurrent vectors such that angles between any two of them is same. If the product of their magnitudes is 14 and
\((\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = 168\), then \(|\vec{a}| + |\vec{b}| + |\vec{c}|\)| is equal to :
Let S={\(a,b,c\)} be the sample space with the associated probabilities satisfying \(P(a)=2P(b)\) and \(P(b)=2P(c).\)Then the value of \(P(a)\) is
Which are the non-benzenoid aromatic compounds in the following?
Car P is heading east with a speed V and car Q is heading north with a speed \(\sqrt{3}\). What is the velocity of car Q with respect to car P?
The condition for coplanarity in the Cartesian form appears from the vector form.
Let's consider two points L (a1, b1, c1) & Q (a2, b2, c2) in the Cartesian plane,
Presuppose that there are two vectors q1 and q2. Their direction ratios are subjected by {x1, y1, z1}, and {x2, y2, z2} respectively.
The vector form of equation of the line in connection to L and Q can be stated as under:
LQ = (a2 – a1)i + (b2 – b1)j + (c2 – c1)k
Q1 = x1i + y1j + z1k
Q2 = x2i + y2j + z2k
For the derivation of the condition for coplanarity in vector form, we shall take into consideration the equations of two straight lines to be as stated below:
r1 = l1 + λq1
r2 = l2 + λq2
The condition for coplanarity in vector form is that the line in connection to the two points should be perpendicular to the product of the two vectors, q1 and q2.