The momentum \( p \) of a photon is given by:
\[
p = \frac{E}{c} = \frac{hf}{c}
\]
Where:
\( h = 6.63 \times 10^{-34} \, \text{J·s} \) (Planck’s constant)
\( f = 6.0 \times 10^{14} \, \text{Hz} \) (frequency)
\( c = 3.0 \times 10^8 \, \text{m/s} \) (speed of light)
Substitute the values:
\[
p = \frac{6.63 \times 10^{-34} \times 6.0 \times 10^{14}}{3.0 \times 10^8}
\]
First, calculate the numerator:
\[
6.63 \times 6.0 = 39.78,\quad \text{and powers: } 10^{-34} \times 10^{14} = 10^{-20}
\]
So, numerator = \( 39.78 \times 10^{-20} \)
Now divide by \( 3.0 \times 10^8 \):
\[
p = \frac{39.78 \times 10^{-20}}{3.0 \times 10^8} = 13.26 \times 10^{-28} = 1.326 \times 10^{-27} \, \text{kg·m/s}
\]