Question:

The length of the common chord of the ellipse $\frac{(x+1)^{2}}{9}+\frac{(y-2)^{2}}{4}=1$ and the circle $x-1^{2}+y-2^{2}=1$ is

Updated On: May 19, 2022
  • 0
  • $\bar{3}$
  • 4
  • 5
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Given : ellipse equation : $\div(x+1)^{2} 9+\div(y-2)^{2} 4=1$
Circle equation : $(x-1)^{2}+(y-2)^{2}=1$
$\therefore$ center of ellipse $=(-1,2)$
$a =3, b =2$
$\therefore$ length of major axis is $6$
$\therefore$ length of minor is $4$
$\Rightarrow$ center of circle is $(1,2$ with radius $r=1)$
$ \Rightarrow $ so, wecanseeindiagramthatthetwoareasdoesnotintersectortoucheachlengthiso
$\Rightarrow$ Hence, The length of common chord of the ellipse and circle is Zero(o).
Was this answer helpful?
0
0

Top Questions on Conic sections

View More Questions