For \( 0<c<b<a \), let \( (a + b - 2c)x^2 + (b + c - 2a)x + (c + a - 2b) = 0 \) and \( \alpha \neq 1 \) be one of its roots. Then, among the two statements
(I) If \( \alpha \in (-1, 0) \), then \( b \) cannot be the geometric mean of \( a \) and \( c \)
(II) If \( \alpha \in (0, 1) \), then \( b \) may be the geometric mean of \( a \) and \( c \)