Given that, \(a = 5\), \(l = 45\) and \(S_n = 400\)
\(S_n = \frac n2(a+l)\)
\(400 = \frac n2(5+45)\)
\(400 = \frac n2(50)\)
\(\frac { 400 \times 2}{50} = n\)
\(n = 16\)
\(l = a + (n−1)d\)
\(45 = 5 + (16 − 1) d\)
\(40 = 15d\)
\(d = \frac {40}{15}\)
\(d = \frac {8}{3}\)