Question:

The expression \(\frac{\int_{0}^{n}[x]dx}{\int_{0}^{n}\left \{ x\right \}dx}\), where [x] and {x} are respectively integral and fractional part of x and n∈N, is equal to

Updated On: Apr 28, 2024
  • \(\frac{1}{n-1}\)
  • \(\frac{1}{n}\)
  • n
  • n-1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The correct answer is option (D): n-1
We have, \(\int_{0}^{n}[x]dx\)
\(=\int_{0}^{}1^{0dx}+\int_{1}^{2}1 dx+\int_{2}^{3}2dx+.....+\int_{n-1}^{n}(n-1)dx\)
\(=0+1(2-1)+2(3-2)+....+(n-1)(n-(n-1))\)
1+2+3+…….+(n-1)=\(\frac{n(n-1)}{2}\)(i)
and \(\int_{0}^{n}\left \{ x \right \}dx=\int_{0}^{n}(x-[x])dx=\int_{0}^{n}xdx-\int_{0}^{n}[x]dx\)
=\(\frac{n^2}{2}=\frac{n(n-1)}{2}\)[using equation (i)]
=\(\frac{n}{2}(n-n+1)=\frac{n}{2}\)(ii)
\(\therefore \frac{\int_{0}^{n}[x]dx}{\int_{0}^{n}\left \{ x \right \}dx}=\frac{\frac{n(n-1)}{2}}{\frac{n}{2}}=(n-1)\)
 
Was this answer helpful?
3
0

Concepts Used:

Definite Integral

Definite integral is an operation on functions which approximates the sum of the values (of the function) weighted by the length (or measure) of the intervals for which the function takes that value.

Definite integrals - Important Formulae Handbook

A real valued function being evaluated (integrated) over the closed interval [a, b] is written as :

\(\int_{a}^{b}f(x)dx\)

Definite integrals have a lot of applications. Its main application is that it is used to find out the area under the curve of a function, as shown below: 

Definite integral