In the adjoining figure, TP and TQ are tangents drawn to a circle with centre O. If $\angle OPQ = 15^\circ$ and $\angle PTQ = \theta$, then find the value of $\sin 2\theta$. 
What is the angle between the hour and minute hands at 4:30?
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: