The binding energy of the nucleus is?
Nuclear binding energy is the energy required to separate an atomic nucleus completely into its constituent protons and neutrons, or, equivalently, the energy that would be liberated by combining individual protons and neutrons into a single nucleus.
Six coins tossed simultaneously then find the probability of getting at least 4 heads.
Find the products formed if chlorine reacts with the cold and dilute sodium hydroxide solution.
Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies the atom as a whole, including its electrons
‘R’ represents the radius of the nucleus. R = RoA1/3
Where,
The mass number (A), also known as the nucleon number, is the total number of neutrons and protons in a nucleus.
A = Z + N
Where, N is the neutron number, A is the mass number, Z is the proton number
Mass defect is the difference between the sum of masses of the nucleons (neutrons + protons) constituting a nucleus and the rest mass of the nucleus and is given as:
Δm = Zmp + (A - Z) mn - M
Where Z = atomic number, A = mass number, mp = mass of 1 proton, mn = mass of 1 neutron and M = mass of nucleus.