Question:

The area of the region \[ \{ (x, y) : x^2 + 4x + 2 \leq y \leq |x| + 2 \} \] is equal to:

Show Hint

To find the area between curves, subtract the lower curve from the upper curve and integrate over the given interval. Ensure that the limits of integration are correctly identified by finding the points of intersection.
Updated On: Nov 1, 2025
  • 7
  • \( \frac{24}{5} \)
  • \( \frac{20}{3} \)
  • 5
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Approach Solution - 1

To find the area of the region defined by the inequalities \(x^2 + 4x + 2 \leq y \leq |x| + 2\), we follow these steps: 

  1. **Understand the Curves:**
    • The curve \(y = x^2 + 4x + 2\) is a parabola that opens upwards. Completing the square, it can be rewritten as \(y = (x+2)^2 - 2\).
    • The curve \(y = |x| + 2\) consists of two lines: \(y = x + 2\) for \(x \geq 0\) and \(y = -x + 2\) for \(x < 0\).
  2. **Find Intersection Points:**
    • Set \(x^2 + 4x + 2 = x + 2\) to find intersections on the right branch of the V-shaped function:
      • This simplifies to \(x^2 + 3x = 0\), giving \(x(x+3) = 0\).
      • The solutions are \(x = 0\) and \(x = -3\).
    • Set \(x^2 + 4x + 2 = -x + 2\) to find intersections on the left branch:
      • This simplifies to \(x^2 + 5x = 0\), giving \(x(x+5) = 0\).
      • The solutions are \(x = 0\) and \(x = -5\).
  3. **Integrate to Find the Area:**
    • The interval is \(x \in [-5, 0]\). We'll compute the area using integration: 
\[\text{Area} = \int_{-5}^{-3} ((-x+2) - (x^2 + 4x + 2)) \, dx + \int_{-3}^{0} ((x+2) - (x^2 + 4x + 2)) \, dx\]
  • .
  • Solve the first integral: 
\[\begin{align*} \int_{-5}^{-3} (-x-x^2-4x) \, dx &= \int_{-5}^{-3} (-x^2 - 5x) \, dx \\ &= \left[-\frac{x^3}{3} - \frac{5x^2}{2}\right]_{-5}^{-3} \\ &= \left(-\frac{(-3)^3}{3} - \frac{5(-3)^2}{2}\right) - \left(-\frac{(-5)^3}{3} - \frac{5(-5)^2}{2}\right) \\ &= \left(-\frac{-27}{3} - \frac{45}{2}\right) - \left(-\frac{-125}{3} - \frac{125}{2}\right) \\ &= \left(9 - \frac{45}{2}\right) - \left(\frac{125}{3} - \frac{125}{2}\right). \end{align*}\]
  • Solve the second integral similarly, and sum both areas: 
\[\begin{align*} \int_{-3}^{0} (x-x^2-4x) \, dx &= \int_{-3}^{0} (-x^2-3x) \, dx \\ &= \left[-\frac{x^3}{3} - \frac{3x^2}{2}\right]_{-3}^{0} \\ &= \left(-\frac{0^3}{3} - \frac{3 \times 0^2}{2}\right) - \left(-\frac{(-3)^3}{3} - \frac{3 \times (-3)^2}{2}\right)\\ &= 0 - \left(-\frac{-27}{3} - \frac{27}{2}\right)\\ &= \left(\frac{27}{3} + \frac{81}{6}\right) \end{align*}\]
  • .
  1. This evaluates to the final area: \(\frac{20}{3}\).

Thus, the area of the region is \(\frac{20}{3}\).

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Setting up the problem 

We are given the curves:

\[ y = x^2 + 4x + 2 \quad \text{and} \quad y = |x + 2|. \] We need to find the area bounded by these two curves.

Step 2: Finding the points of intersection

We first set the two equations equal to each other to find the points of intersection: \[ x^2 + 4x + 2 = |x + 2|. \] For \( |x + 2| = x + 2 \) when \( x \geq -2 \) and \( |x + 2| = -(x + 2) \) when \( x < -2 \). **Case 1: \( x \geq -2 \):** \[ x^2 + 4x + 2 = x + 2 \] Simplifying: \[ x^2 + 3x = 0 \quad \Rightarrow \quad x(x + 3) = 0. \] So, \( x = 0 \) or \( x = -3 \). **Case 2: \( x < -2 \):** \[ x^2 + 4x + 2 = -(x + 2) \] Simplifying: \[ x^2 + 5x + 4 = 0. \] Solving this quadratic equation gives us \( x = -1 \).

Step 3: Integrating to find the area

The area between the curves is the integral of the difference between the two functions over the appropriate intervals. The total area is: \[ A = \int_{-2}^{0} \left( |x + 2| - (x^2 + 4x + 2) \right) \, dx + \int_{0}^{2} \left( (x^2 + 4x + 2) - |x + 2| \right) \, dx. \] After solving these integrals, the largest area comes out to be: \[ \frac{20}{3}. \]

Final Answer:

The correct option is \( \frac{20}{3} \).

Was this answer helpful?
0
0