Probability Distribution of Random Variable X
X | 1 | 2 | 3 | 2λ | 3λ | 4λ |
---|---|---|---|---|---|---|
P(X) | \(\frac{11}{30}\) | \(\frac{1}{15}\) | \(\frac{10}{30}\) | \(\frac{3\lambda}{10}\) | \(\frac{1}{15}\) | \(\frac{1}{10}\) |
(i) Calculate \( \lambda \), if \( E(X) = 3.2 \)
(ii) Find P(X > 1).
We use the fact that the total sum of all probabilities must equal 1:
\[ \frac{11}{30} + \frac{1}{15} + \frac{10}{30} + \frac{3\lambda}{10} + \frac{1}{15} + \frac{1}{10} = 1 \]
Convert all terms to have a denominator of 30:
\[ \frac{11}{30} + \frac{2}{30} + \frac{10}{30} + \frac{9\lambda}{30} + \frac{2}{30} + \frac{3}{30} = 1 \]
Simplify the constants:
\[ \frac{28 + 9\lambda}{30} = 1 \]
Multiply both sides by 30:
\[ 28 + 9\lambda = 30 \Rightarrow 9\lambda = 2 \Rightarrow \lambda = \frac{2}{9} \]
This corresponds to \( X = 2, 3, 2\lambda, 3\lambda, 4\lambda \):
\[ P(X > 1) = P(X=2) + P(X=3) + P(X=2\lambda) + P(X=3\lambda) + P(X=4\lambda) \]
Substitute the values:
\[ P(X > 1) = \frac{1}{15} + \frac{10}{30} + \frac{3 \times \lambda}{10} + \frac{1}{15} + \frac{1}{10} \]
Now substitute \( \lambda = \frac{2}{9} \):
\[ P(X > 1) = \frac{1}{15} + \frac{1}{3} + \frac{6}{30} + \frac{1}{15} + \frac{1}{10} \]
Convert to common denominator (LCM = 30):
\[ P(X > 1) = \frac{2}{30} + \frac{10}{30} + \frac{6}{30} + \frac{2}{30} + \frac{3}{30} = \frac{23}{30} \]
Bittu and Chintu were partners in a firm sharing profit and losses in the ratio of 4:3. Their Balance Sheet as at 31st March, 2024 was as
On $1^{\text {st }}$ April, 2024, Diya was admitted in the firm for $\frac{1}{7}$ share in the profits on the following terms:
Prepare Revaluation Account and Partners' Capital Accounts.
(a) Calculate the standard Gibbs energy (\(\Delta G^\circ\)) of the following reaction at 25°C:
\(\text{Au(s) + Ca\(^{2+}\)(1M) $\rightarrow$ Au\(^{3+}\)(1M) + Ca(s)} \)
\(\text{E\(^\circ_{\text{Au}^{3+}/\text{Au}} = +1.5 V, E\)\(^\circ_{\text{Ca}^{2+}/\text{Ca}} = -2.87 V\)}\)
\(\text{1 F} = 96500 C mol^{-1}\)