Let \[ x_1 = a, \quad x_2 = ar, \quad x_3 = ar^2, \quad x_4 = ar^3 \] Given that \[ a - 2, \quad ar - 7, \quad ar^2 - 9, \quad ar^3 - 5 \] are in A.P. Hence, \[ a_2 - a_1 = a_3 - a_2 \] \[ (ar - 7) - (a - 2) = (ar^2 - 9) - (ar - 7) \] \[ a(r - 1) - 5 = ar(r - 1) - 2 \] \[ a(r - 1)(r - 1) = -3 \quad \text{...(i)} \] Also, \[ a_2 - a_1 = a_4 - a_3 \] \[ (ar - 7) - (a - 2) = (ar^3 - 5) - (ar^2 - 9) \] \[ a(r - 1) - 5 = ar^2(r - 1) + 4 \] \[ a(r - 1)(r^2 - 1) = -9 \quad \text{...(ii)} \] Dividing (ii) by (i): \[ \frac{a(r - 1)(r^2 - 1)}{a(r - 1)(r - 1)} = \frac{-9}{-3} \] \[ r + 1 = 3 \Rightarrow r = 2 \] Substituting in (i): \[ a(1)(1) = -3 \Rightarrow a = -3 \] Thus, \[ x_1 = -3, \quad x_2 = -6, \quad x_3 = -12, \quad x_4 = -24 \] Now, \[ \frac{1}{24}(x_1 \cdot x_2 \cdot x_3 \cdot x_4) = \frac{1}{24}(-3)(-6)(-12)(-24) = 216 \] \[ \boxed{216} \]
The sum $ 1 + \frac{1 + 3}{2!} + \frac{1 + 3 + 5}{3!} + \frac{1 + 3 + 5 + 7}{4!} + ... $ upto $ \infty $ terms, is equal to
If $ \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + ... \infty = \frac{\pi^4}{90}, $ $ \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + ... \infty = \alpha, $ $ \frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + ... \infty = \beta, $ then $ \frac{\alpha}{\beta} $ is equal to:
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
