From the given equation:
\[ \vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times \vec{c} = \hat{i} + 8\hat{j} + 13\hat{k}. \]
Expanding using vector algebra:
\[ \vec{a} \times \vec{b} + \vec{a} \times \vec{c} + \vec{b} \times \vec{c} = \hat{i} + 8\hat{j} + 13\hat{k}. \]
It is given:
\[ \vec{a} \times \vec{b} = \hat{i} + 8\hat{j} + 13\hat{k}. \]
So:
\[ \vec{a} \times \vec{c} + \vec{b} \times \vec{c} = \vec{0}. \]
Expanding further:
\[ \vec{b} \times \vec{c} = -\vec{a} \times \vec{c}. \]
Using \( \vec{a} \cdot \vec{c} = 13 \), compute:
\[ \vec{b} \cdot \vec{c} = -\left[\vec{a} \cdot (\hat{i} + 8\hat{j} + 13\hat{k})\right] = -22. \]
From the determinant of \( \vec{b} \cdot \vec{c} \):
\[ 24 - \vec{b} \cdot \vec{c} = 46. \]
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: