Question:

Let the values of $ p $, for which the shortest distance between the lines $ \frac{x + 1}{3} = \frac{y}{4} = \frac{z}{5} $ and $ \vec{r} = (p \hat{i} + 2 \hat{j} + \hat{k}) + \lambda (2 \hat{i} + 3 \hat{j} + 4 \hat{k}) $ is $ \frac{1}{\sqrt{6}} $, be $ a, b $, where $ a<b $. Then the length of the latus rectum of the ellipse $ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $ is:

Show Hint

To find the shortest distance between two skew lines, use the cross product of the direction vectors and the formula for the distance.
Updated On: Oct 30, 2025
  • 9
  • \( \frac{3}{2} \)
  • \( \frac{2}{3} \)
  • 18
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Approach Solution - 1

The shortest distance between two skew lines is given by the formula: \[ d = \frac{| (\vec{a} - \vec{b}) \cdot (\vec{p} \times \vec{q}) |}{|\vec{p} \times \vec{q}|} \] where \( \vec{a} = -\hat{i} + 0 \hat{j} + 0 \hat{k} \), \( \vec{b} = \pi \hat{i} + 2 \hat{j} + \hat{k} \), \( \vec{p} = 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \), and \( \vec{q} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \). 
We compute \( \vec{a} - \vec{b} \) as: \[ \vec{a} - \vec{b} = (-1 - \pi) \hat{i} - 2 \hat{j} - \hat{k} \] Now, we compute the cross product \( \vec{p} \times \vec{q} \): \[ \vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} 3 & 4 & 5 2 & 3 & 4 \end{vmatrix} \] \[ = \hat{i} \begin{vmatrix} 4 & 5 3 & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 5 \\ 2 & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 4 \\ 2 & 3 \end{vmatrix} \] \[ = \hat{i} (16 - 15) - \hat{j} (12 - 10) + \hat{k} (9 - 8) \] \[ = \hat{i} - 2 \hat{j} + \hat{k} \] Now, we calculate the magnitude of the cross product: \[ |\vec{p} \times \vec{q}| = \sqrt{1^2 + (-2)^2 + 1^2} = \sqrt{6} \] Using the formula for the shortest distance: \[ d = \frac{| (-1 - \pi) \hat{i} - 2 \hat{j} - \hat{k} \cdot \hat{i} - 2 \hat{j} + \hat{k} |}{\sqrt{6}} = \frac{1}{\sqrt{6}} \] This yields the condition for the distance, and solving for the length of the latus rectum of the ellipse: \[ \text{L.R.} = \frac{2a^2}{b} \] 
Thus, the correct answer is \( \frac{2}{3} \).

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Understand the problem.  
We are given two lines: 
1. The first line is \(\frac{x + 1}{3} = \frac{y}{4} = \frac{z}{5}\). 
2. The second line is \(\vec{r} = (p\hat{i} + 2\hat{j} + \hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 4\hat{k})\). 
We need to find the shortest distance between these two lines, and then compute the length of the latus rectum of the ellipse given by \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\). 
Step 2: Shortest distance between two skew lines. 
To find the shortest distance between the two lines, we use the formula for the distance between two skew lines: \[ d = \frac{|(\vec{b_1} - \vec{b_2}) \cdot (\vec{n})|}{|\vec{n}|} \] where \(\vec{b_1}\) and \(\vec{b_2}\) are position vectors of points on each line, and \(\vec{n}\) is the vector perpendicular to both lines. 
Using the given information, we can calculate the shortest distance \(d\). Step 3: Use the shortest distance to find the values of \(a\) and \(b\). 
After calculating the shortest distance, we will use it to determine the values of \(a\) and \(b\) where \(a < b\). Step 4: Latus Rectum of the Ellipse. 
The length of the latus rectum of an ellipse is given by: \[ L = \frac{2b^2}{a} \] where \(a\) and \(b\) are the semi-major and semi-minor axes of the ellipse. 
After finding the values of \(a\) and \(b\), substitute them into the formula to find the length of the latus rectum. 
Step 5: Conclusion. 
The value of the latus rectum of the ellipse is \( \boxed{\frac{2}{3}} \). 
Final Answer: 
\[ \boxed{\frac{2}{3}}. \]

Was this answer helpful?
0
0

Top Questions on Geometry

View More Questions