
\( \log_6(3 + 4x - x^2)>1 \)
\( 3 + 4x - x^2>6 \) \( x^2 - 4x + 3<0 \)
\( (x-1)(x-3)<0 \) \( x \in (1, 3) \) So \( a = 1 \) and \( b = 3 \)
\( \Rightarrow \int_0^{2} [x^2] dx = ? \) \( I = \int_0^1 [x^2] dx + \int_1^{\sqrt{2}} [x^2] dx + \int_{\sqrt{2}}^{\sqrt{3}} [x^2] dx + \int_{\sqrt{3}}^{2} [x^2] dx \)
\( = 0 + |x|_1^{\sqrt{2}} + 2|x|_{\sqrt{2}}^{\sqrt{3}} + 3|x|_{\sqrt{3}}^{2} \) \( = (\sqrt{2}-1) + 2(\sqrt{3}-\sqrt{2}) + 3(2-\sqrt{3}) \) \( = 5 - \sqrt{2} - \sqrt{3} \) \( \Rightarrow p + q + r = 10 \)
Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying $f(0) = 1$ and $f(2x) - f(x) = x$ for all $x \in \mathbb{R}$. If $\lim_{n \to \infty} \left\{ f(x) - f\left( \frac{x}{2^n} \right) \right\} = G(x)$, then $\sum_{r=1}^{10} G(r^2)$ is equal to
If the domain of the function \( f(x) = \dfrac{1}{\sqrt{10 + 3x - x^2}} + \dfrac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \((1 + a)^2 + b^2\) is equal to:
1 Faraday electricity was passed through Cu$^{2+}$ (1.5 M, 1 L)/Cu and 0.1 Faraday was passed through Ag$^+$ (0.2 M, 1 L) electrolytic cells. After this, the two cells were connected as shown below to make an electrochemical cell. The emf of the cell thus formed at 298 K is:
Given: $ E^\circ_{\text{Cu}^{2+}/\text{Cu}} = 0.34 \, \text{V} $ $ E^\circ_{\text{Ag}^+/ \text{Ag}} = 0.8 \, \text{V} $ $ \frac{2.303RT}{F} = 0.06 \, \text{V} $
An organic compound (X) with molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ is not readily oxidised. On reduction it gives $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}(\mathrm{Y})\right.$ which reacts with HBr to give a bromide (Z) which is converted to Grignard reagent. This Grignard reagent on reaction with (X) followed by hydrolysis give 2,3-dimethylbutan-2-ol. Compounds (X), (Y) and (Z) respectively are:
Given below are the pairs of group 13 elements showing their relation in terms of atomic radius. $(\mathrm{B}<\mathrm{Al}),(\mathrm{Al}<\mathrm{Ga}),(\mathrm{Ga}<\mathrm{In})$ and $(\mathrm{In}<\mathrm{Tl})$ Identify the elements present in the incorrect pair and in that pair find out the element (X) that has higher ionic radius $\left(\mathrm{M}^{3+}\right)$ than the other one. The atomic number of the element (X) is