Question:

Let $S=\frac{2}{1} ^{n}C_{0}+\frac{2^{2}}{2} ^{n}C_{1}+\frac{2^{3}}{3} ^{n}C_{2}+ ...... +\frac{2^{n+1}}{n+1} ^{n}C_{n}$. Then $S$ equals

Updated On: Jun 18, 2022
  • $\frac{2^{n+1}-1}{n+1}$
  • $\frac{3^{n+1}-1}{n+1}$
  • $\frac{3^n-1}{n}$
  • $\frac{2^{n}-1}{n}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We know that
$(1+x)^{n}={ }^{n} C_{0}+x{ }^{n} C_{1}+x^{2}{ }^{n} C_{2}+\ldots+x^{n}{ }^{n} C_{n}$
On integrating both sides from 0 to 2 , we get
$\left[\frac{(1+x)^{n+1}}{n+1}\right]_{0}^{2}$
$=\left[x^{n} C_{0}+\frac{x^{2}}{2}{ }^{n} C_{1}+\frac{x^{3}}{3}{ }^{n} C_{2}+\ldots+\frac{x^{n+1}}{n+1}{ }^{n} C_{n}\right]_{0}^{2}$
$\Rightarrow \frac{(3)^{n+1}}{n+1}-\frac{1}{n+1}=2{ }^{n} C_{0}+\frac{2^{2}}{2}{ }^{n} C_{1}+\frac{2^{3}}{3}{ }^{n} C_{2}+\ldots+\frac{2^{n+1}}{n+1}{ }^{n} C_{n}-0$
$\Rightarrow \frac{2}{1}{ }^{n} C_{0}+\frac{2^{2}}{2}{ }^{n} C_{1}+\frac{2^{3}}{3}{ }^{n} C_{2}+\ldots+\frac{2^{n+1}}{n+1}{ }^{n} C_{n}$
$=\frac{3^{n+1}-1}{n+1}$
Was this answer helpful?
0
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.